MDSCO-2025-10

Maryland Climate Bulletin October 2025

Prepared by Dr. Alfredo Ruiz-Barradas Maryland State Climatologist

This publication is available from: https://mdsco.umd.edu/ClimateInfo/Bulletin.php

Summary

Statewide averages indicate that October 2025 was slightly colder and drier than normal (i.e., 1991-2020 averages). Regionally, monthly mean temperatures were between 51 and 59°F, while monthly total precipitation was in the 1.5–4.0 inches range.

Maryland Regional Features (Figures 1–3, A1)

- The mean temperature was warmer than normal in some areas of the state, particularly over counties in the central Piedmont and the Eastern Shore (around 1.0°F). Colder-thannormal conditions appeared over parts of Garrett, Prince George's, and Charles counties (around 1.0°F below).
- Precipitation was below normal for most of the state, especially over portions of Saint Mary's, Charles, Calvert, Somerset, Dorchester, and Talbot counties (around 2 inches deficit), which received around 50% less precipitation than normal for the month. Abovenormal precipitation appeared only over western Washington County (around 1 inch), which got around 25% more precipitation than normal. The rest of the state, with belownormal precipitation, received around 25% less precipitation than normal.
- Drought conditions deteriorated in October. The extent of the state affected by drought increased from 50% to 90%, with a rise in the areas having Abnormally Dry and Moderate Drought conditions. Moderate Drought conditions affected Garrett, Allegany, Washington, Frederick, and Montgomery counties, as well as western Carroll, Howard, Prince George's, Charles, and northeastern Cecil counties. The Severe Drought conditions in Garrett and Washington counties, and the Extreme Drought conditions in Garrett County that appeared in September, persisted into this month. Abnormally Dry conditions covered the rest of the counties in the Piedmont, and most of the counties on the Eastern Shore; Worcester and Queen Anne's counties, and parts of Wicomico and Kent counties remained drought-free. The number of streams and rivers experiencing Below-normal and Much-below-normal streamflow increased this month.

Chesapeake Bay Sea Surface Temperatures (Figures 4, 5, C1)

• The Chesapeake Bay sea surface temperatures (SST) in October 2025 were in the 63–70°F range. Regionally, they were below their 2007–2020 mean across much of the Bay, except in the waters north of Baltimore, extending into the Upper Bay, where warm anomalies exceeded 4°F. The coldest anomalies were found in the southeastern Lower Bay, in the Tangier Sound waters off Somerset, Wicomico, and Dorchester counties, as well as in the Chincoteague Bay (3–4°F below). The all-basin mean temperature of

66.3°F was still warmer than the coldest October in the 19-year dataset (2007-2025), which recorded a temperature of 62.2°F in 2002.

Contents

Su	mn	nary	i
Co	nte	ents	.iii
1.	I	ntroduction	1
2.	Ι	Oata & Methods	1
3.	(October 2025 Maps	5
1	٩.	Mean Temperature and Precipitation Anomalies	5
1	3.	Drought	6
(С.	Streamflow	7
4.	(Chesapeake Bay's Satellite Sea Surface Temperatures	8
1	4.	October 2025 Maps	8
I	3.	Upper, Middle, Lower, and Entire Basins in October	9
Ap	pe	ndix A. October 1991-2020 Climatology Maps and October 2025 Precipitation as Percentage	
of (of Climatology		
Ap	pe	ndix B. October Standard Deviation Maps	11
Ap	pe	ndix C. 2007-2020 Mean and Standard Deviation of Sea Surface Temperatures in October	12
Re	fer	ences	13

1. Introduction

The Maryland Climate Bulletin is issued by the Maryland State Climatologist Office (MDSCO), which resides in the Department of Atmospheric and Oceanic Science at the University of Maryland, College Park. It documents the surface climate conditions observed across the state in a calendar month and is issued in the second week of the following month.

Maryland's geography is challenging, with the Allegheny and Blue Ridge mountains to the west, the Piedmont Plateau in the center, the Chesapeake Bay, and the Atlantic Coastal Plain to the east. The range of physiographic features and the state's eastern placement within the expansive North American continent contribute to a comparatively wide range of climatic conditions.

The bulletin aims to document and characterize monthly surface climate conditions in the state, situating them within the context of regional and continental climate variability and change, to help Marylanders interpret and understand recent climate conditions.

This edition, however, has been affected by circumstances beyond our control, impacting NOAA's National Centers for Environmental Information (NCEI) and their ability to process the main data source we use for the Bulletin. This time, the monthly surface climate conditions for October 2025 are presented via anomaly (i.e., departures from normal) maps of the mean surface air temperature and total precipitation; they are complemented by drought conditions, as given by the U.S. Drought Monitor, and streamflow anomalies as given by the U.S. Geological Survey Water Watch in Section 3. Monthly sea surface temperatures (SST) in the Chesapeake Bay are presented in Section 4. Ancillary climatology maps, including the percentage of normal precipitation for October 2025 and variability maps, are included in Appendices A and B. The mean and variability of the SSTs in the Chesapeake Bay are displayed in Appendix C.

2. Data & Methods

The maps of surface air temperatures and total precipitation for October 2025 are from the Northeast Regional Climate Center (NRCC), and we have no control over the colors or contour intervals used:

- In particular, the Monthly Maps website:
 https://www.nrcc.cornell.edu/regional/monthly/monthly.html

 The maps were downloaded on November 8, 2025.
 The data used by the NRCC to generate the downloaded maps are from a product on a 5×5km grid put together by NOAA Regional Climate Centers' Applied Climate Information System (ACIS).
- Statewide averages from the "NRCC hi-resolution" gridded dataset were obtained online through the ACIS website: https://scacis.rcc-acis.org

The drought conditions map is from the U.S. Drought Monitor website: https://droughtmonitor.unl.edu/Maps/MapArchive.aspx

The streamflow conditions map is from the U.S. Geological Survey Water Watch website: https://waterwatch.usgs.gov/index.php

Data and sources for the Chesapeake Bay are the following:

• Satellite-based sea surface temperatures from NOAA's CoastWatch Program. The data was made available by the Program's East Coast Node. This satellite-based sea surface temperature data uses data from the Advanced Very High Resolution Radiometer (AVHRR) on the European MetOp satellites, and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the U.S. SNPP and NOAA JPSS satellites. In creating this product, nighttime overpasses for the U.S. East Coast are used, thereby avoiding daytime solar heating of the ocean surface and the associated warm bias in the data. In particular, the acquired product consists of monthly sea surface temperature data for the Chesapeake and Delaware Bays, with a nominal horizontal resolution of 750 m from 2007 to the present. This product is available at:

https://eastcoast.coastwatch.noaa.gov/data/avhrr-viirs/sst-ngt Data was downloaded on November 5, 2025.

• A shapefile of watersheds for the state from the Maryland Department of the Environment and the Department of Natural Resources: the Maryland Watersheds – 8 Digit Watersheds. It contains 138 separate watersheds, identified with an 8-digit numeric code from which three are on the main steam of the Chesapeake Bay: the Upper Chesapeake Bay (code: 02139996; from the mouth of the Susquehanna River to northern side of the mouth of the Gunpowder River), the Middle Chesapeake Bay (code: 02139997; from the Gunpowder River to the mouth of the Chester River), and the Lower Chesapeake Bay (code: 02139998; from the south side of the mouth of the Chester River to the mouth of the Potomac River), which in turn are used to create a one-watershed shapefile for the entire basin. These four watersheds are used to create area-averaged sea surface temperatures for the Bay. The shapefile and associated files are available at: https://data.imap.maryland.gov/datasets/maryland::maryland-watersheds-8-digit-watersheds/about

Some definitions:

About climate and climatology. Weather and climate are closely related, but they are not the same. Weather represents the state of the atmosphere (temperature, precipitation, etc.) at any given time. On the other hand, climate refers to the time average of the weather elements when the average is over long periods. If the average period is long enough, we can start to characterize the climate of a particular region.

It is customary to follow the World Meteorological Organization (WMO) recommendation and use 30 years for the average. The 30-year average weather data is traditionally known as Climate Normal (Kunkel and Court, 1990) and is updated every ten years (WMO, 2017). Establishing a climate normal or climatology is important as it allows one to compare a specific day, month,

season, or even another normal period with the current normal. Such comparisons characterize anomalous weather and climate conditions, climate variability and change, and help define extreme weather and climate events (Arguez et al., 2012). The current climate normal, or simply the climatology, is defined for the period 1991–2020.

It should be noted that the satellite-based sea surface temperature data set has a short temporal coverage of 19 years, from 2007 to the present, which prevents the calculation of its current climate normal (1991-2020). This will be referred to as the 2007-2020 mean and not as a climatology.

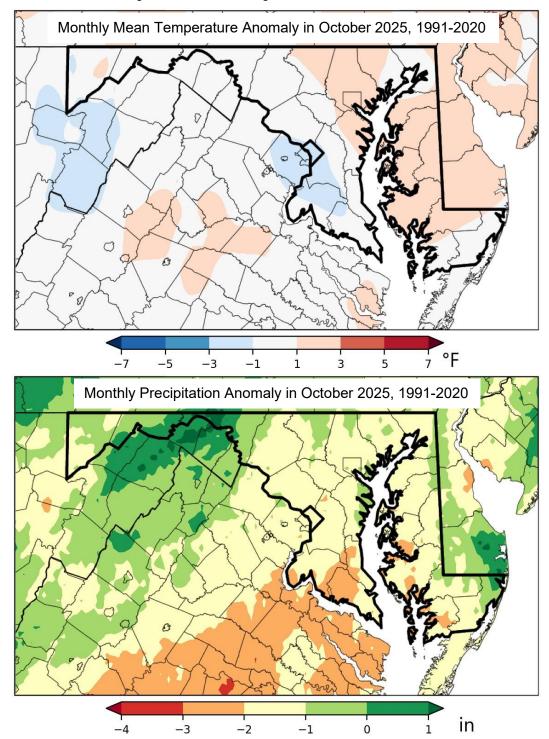
About the anomalies: Anomalies for a given month (e.g., October 2025) are the departures of the monthly value from the corresponding month's 30-year average (i.e., from the average of 30 Octobers) during 1991-2020. When the observed monthly value exceeds its climatological value, it is referred to as above normal (e.g., warmer than normal or wetter than normal) or a positive anomaly. In contrast, when this value is smaller than its climatological value, it is referred to as below normal (e.g., colder than normal or drier than normal) or a negative anomaly. In the case of the sea surface temperature anomalies, they are calculated with respect to their 2007-2020 mean.

About variability. The monthly standard deviation of a climate variable measures its dispersion relative to its monthly mean and assesses its year-to-year, or interannual, variability. Anomalies are sometimes compared against that variability to identify extremes in the climate record. When anomalies are divided by the standard deviation, they are referred to as standardized anomalies.

About NOAA's Climate Divisions. The term "climate division" refers to one of the eight divisions in the state that represent climatically homogeneous regions, as determined by NOAA: https://www.ncei.noaa.gov/access/monitoring/dyk/us-climate-divisions

The eight climate divisions in Maryland are:

- Climate Division 1: Southeastern Shore. It includes the counties of Somerset, Wicomico, and Worcester.
- Climate Division 2: Central Eastern Shore. It includes the counties of Caroline, Dorchester, and Talbot.
- Climate Division 3: Lower Southern. It includes the counties of Calvert, Charles, and St. Mary's.
- Climate Division 4: Upper Southern. It includes the counties of Anne Arundel and Prince George's.
- Climate Division 5: Northeastern Shore. It includes the counties of Kent and Queen Anne's.


- Climate Division 6: North Central. It includes the counties of Baltimore, Carroll, Cecil,
 Frederick, Harford, Howard, Montgomery, and the city of
 Baltimore.
- Climate Division 7: Appalachian Mountains. It includes the counties of Allegany and Washington.
- Climate Division 8: Allegheny Plateau. It includes Garrett County.

Note that these Climate Divisions do not correspond with the *Physiographic Provinces* in the state, as the former follow county lines. Climate Division 8 follows the *Appalachian Plateau Province*, Climate Division 7 follows the *Ridge and Valley Province*; however, Climate Division 6 includes the *Blue Ridge and the Piedmont Plateau provinces*, Climate Divisions 3, 4, and a portion of 6 include the *Upper Coastal Plain Province*, and Climate Divisions 1, 2, 5, and a portion of 6 include the *Lower Coastal Plain (or Atlantic Continental Shelf) Province*.

3. October 2025 Maps

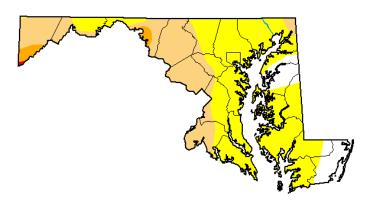
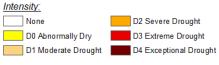

A. Mean Temperature and Precipitation Anomalies

Figure 1. Monthly anomalies in mean surface air temperature (top panel) and precipitation (bottom panel) with respect to the 1991-2020 climatology for October 2025. Temperatures are in °F following the color bar with blue/pink shading marking colder/warmer than normal conditions. Precipitation is measured in inches with light-green-to-red/dark-greens shading marking drier/wetter than normal conditions.

B. Drought


U.S. Drought Monitor Maryland

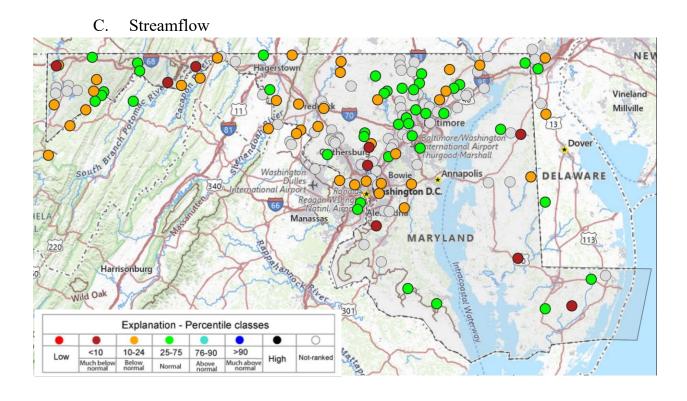
October 28, 2025

(Released Thursday, Oct. 30, 2025) Valid 8 a.m. EDT

Drought Conditions (Percent Area) None D0 D1 D2 D4 9.49 58.28 29.90 2.23 0.10 0.00 Current Last Week 71.43 15.23 11.32 1.93 0.10 0.00 10-21-2025 3 Months Ago 97.03 2 97 0.00 0.00 0.00 0.00 Start of Calendar Year 01-07-2025 1.19 3.51 43.73 51.57 0.00 0.00 Water Year 49.93 6.70 2.28 0.00 One Year Ago 12.59 20.56 46.15 16.63 4.07 0.00

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. For more information on the Drought Monitor, go to https://droughtmonitor.unl.edu/About.aspx

<u>Author:</u> Richard Tinker CPC/NOAA/NWS/NCEP



droughtmonitor.unl.edu

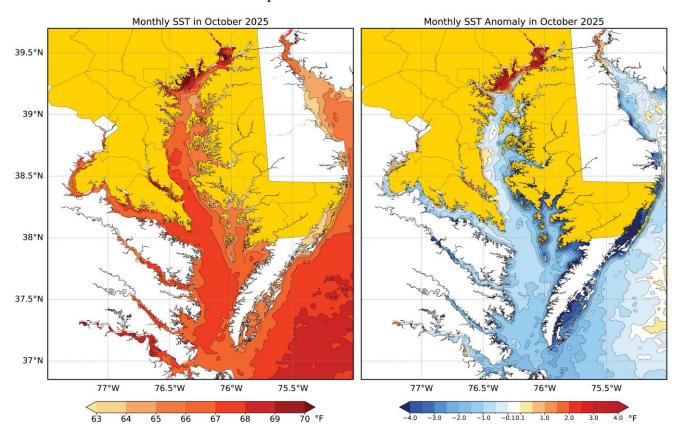
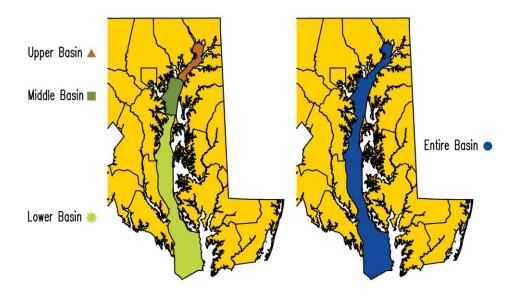

Figure 2. Drought conditions as reported by the U.S. Drought Monitor on October 28, 2025. Drought conditions have expanded from 50% to 90% since the end of September. Abnormally Dry, Moderate, Severe, and Extreme Drought conditions occupied most of the state. The extent of Abnormally Dry conditions increased to 58%, while the extent of Moderate Drought conditions increased to nearly 30%. The extent of Severe Drought and Extreme Drought conditions remained relatively unchanged from last month. Yellow shading indicates abnormally dry regions, light orange shading shows regions under a moderate drought, darker orange marks regions under severe drought, and red shading indicates extreme drought according to the drought intensity key. Numbers in the table indicate the percentage of the state covered under the particular drought conditions at the time (in the left column). Areas shown in yellow (Abnormally Dry) indicate land that is going into or coming out of drought. Light orange areas (Moderate Drought) highlight land that may experience low water supply and damage to crops and pastures. Orange areas (Severe Drought) show land with water shortages and an increased likelihood of crop and pasture losses. Red areas (Extreme Drought) highlight land that may experience widespread water shortages and major losses of crops and pastures, with forests susceptible to fire. Current conditions can be monitored on the U. S. Drought Monitor website. If interested, you can help monitor drought conditions by submitting a report of your local soil conditions through the National Drought Mitigation Center's Drought Impact Toolkit by using the Condition Monitoring Observer Reports system.

Figure 3. Monthly averaged streamflow class anomalies as reported by the U.S. Geological Survey (USGS) Water Watch for October 2025. Green-filled circles represent Normal streamflow conditions, while orange to red-filled circles denote Below-normal and Much below-normal streamflow conditions. More streams and rivers had below-normal streamflow than in the last month. Current conditions can be monitored on the <u>U.S. Geological Survey website</u>.


4. Chesapeake Bay's Satellite Sea Surface Temperatures

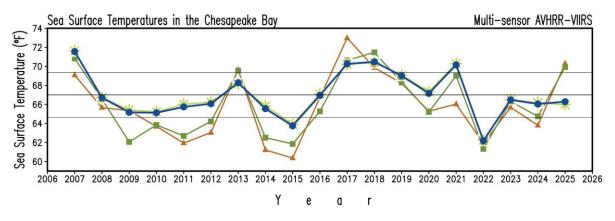

A. October 2025 Maps

Figure 4. Monthly sea surface temperature (left panel) and its anomaly (right panel) in the Chesapeake Bay and surrounding coastal areas in October 2025. Temperatures are in °F following the color bar. Blue/red shading in the anomaly map marks colder/warmer temperatures than the 2007-2020 mean. For clarity, the temperatures and their anomalies have been smoothed using a 9-point spatial smoother applied four times. Note that Maryland has been shaded yellow to facilitate focusing on the state waters.

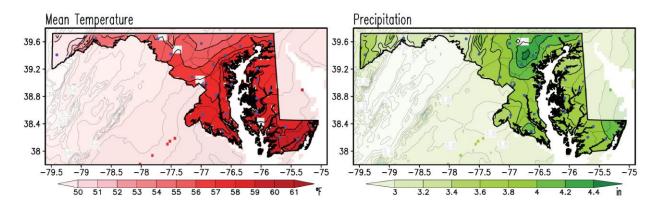
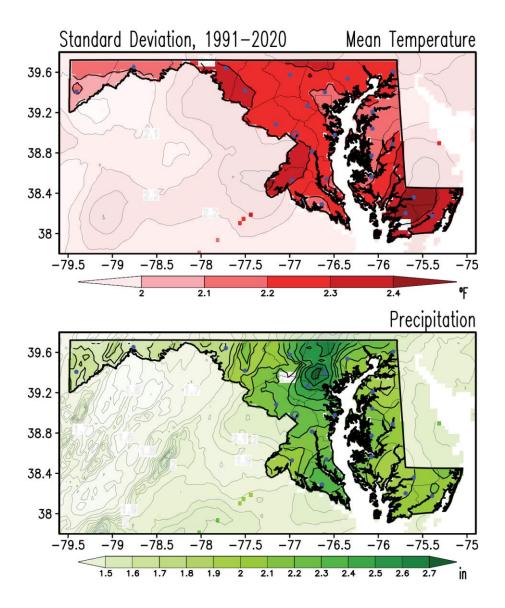
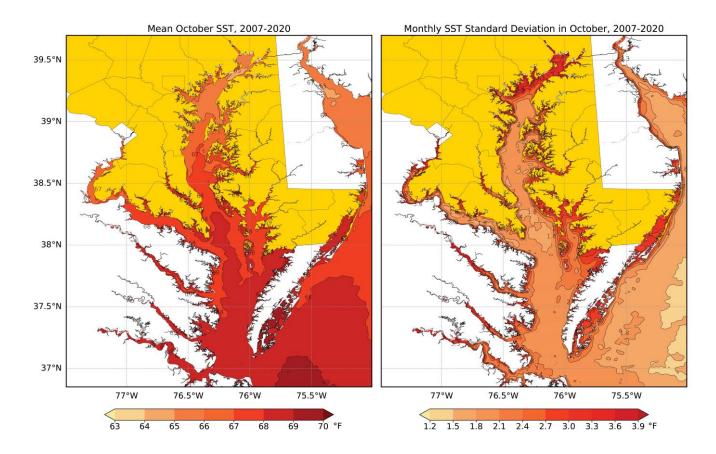

B. Upper, Middle, Lower, and Entire Basins in October

Figure 5. Watersheds in the Chesapeake Bay (top panel) and their area-averaged sea surface temperatures in October for the period 2007-2025 (bottom panel). Temperatures are in °F. The color of the lines corresponds to the color of the watersheds in the Bay, as indicated on the maps: Brown for the Upper Bay, dark green for the Middle Bay, light green for the Lower Bay, and Navy Blue for the Entire Bay. The mean temperature for the Entire basin in October 2025 was 66.3°F, while for the Upper, Middle, and Lower basins was 70.3, 69.9, and 66.0°F, respectively. The thin, continuous black line in the lower panel displays the 2007-2025 mean for the Entire Basin (67.0°F), and the double thin, continuous gray lines indicate the standard deviation (2.4°F) above/below the long-term mean. The 2007-2025 mean temperatures for the Upper, Middle, and Lower basins in October were 65.8, 66.1, and 67.1°F, respectively, while their standard deviations were 3.4, 3.3, and 2.3°F, respectively.


Appendix A. October 1991-2020 Climatology Maps and October 2025 Precipitation as Percentage of Climatology


Figure A1. October climatology of the monthly mean surface air temperatures, and total precipitation for the period 1991-2020 (upper row), and precipitation in October 2025 as a percentage of climatology (bottom row). Temperatures are in °F, and precipitation is in inches according to the color bars. Precipitation as a percentage is calculated by dividing the total precipitation by the climatology and multiplying that ratio by 100, so the units are expressed as a percentage of the climatology (%); the orange-red/yellow-green shading in this map indicates drier/wetter than normal conditions; note that precipitation less than 50% of climatology is shaded reds. The climatology maps were obtained from an archived in-house NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid – Vose et al., 2014), while the precipitation as a percentage in the climatology map was downloaded from the Northeast Regional Climate Center. Note that in the climatology maps, shading outside the state has been washed out to facilitate focusing on Maryland, and that filled blue circles mark the county seats.

Appendix B. October Standard Deviation Maps

Figure B1. Standard deviation for October mean surface air temperature (upper) and total precipitation (bottom) for the 1991-2020 period. The standard deviations in temperatures are in °F, and those in precipitation are in inches according to the color bars. Note that shading outside the state has been washed out to facilitate focusing on Maryland. Filled blue circles mark the county seats. The maps were obtained from an archived in-house NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid – Vose et al., 2014).

Appendix C. 2007-2020 Mean and Standard Deviation of Sea Surface Temperatures in October

Figure C1. Mean (left panel) and standard deviation (right panel) of sea surface temperatures in the Chesapeake Bay and surrounding coastal areas in October for the period 2007-2020. The mean and standard deviation of the temperatures are in °F according to the color bars; the color bar in the map of the mean (left panel) has the same range as the map for October 2025 in Figure 4 (left panel) for easy visual comparison between them. The mean temperature map is the current mean against which the October 2025 conditions are compared to obtain the October 2025 anomalies (from Figure 4). For clarity, the mean and standard deviation of the sea surface temperature have been smoothed using a 9-point spatial smoother applied four times. Note that Maryland has been shaded yellow to facilitate focusing on the state waters.

References

Arguez A., I. Durre, S. Applequist, R. S. Vose, M. F. Squires, X. Yin, R. R. Heim Jr, and T. W. Owen, 2012. NOAA's 1981-2010 U. S. Climate Normals. An Overview. *Bulletin of the American Meteorological Society*. 93, 1687-1697, doi:10.1175/BAMS-D-11-00197.1 https://www1.ncdc.noaa.gov/pub/data/normals/1981-2010/documentation/1981-2010-normals-overview.pdf.

Kunkel, K. E., and A. Court, 1990. Climatic Means and Normals—A Statement of the American Association of State Climatologists (AASC), *Bulletin of the American Meteorological Society*, 71(2), 201-204. Retrieved Aug 20, 2022, from https://journals.ametsoc.org/view/journals/bams/71/2/1520-0477-71 2 201.xml

Vose and co-authors, 2014. NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid), Version 3. NOAA National Centers for Environmental Information. DOI:10.7289/V5SX6B56.

WMO, 2017. WMO Guidelines on the Calculation of Climate Normals. WMO-No. 1203, Series. 29pp. https://library.wmo.int/doc_num.php?explnum_id=4166.